NAVAL POSTGRADUATE SCHOOL Monterey, California


```
HIDE AND SEEK FROM A FIXED BASE
                                    by
    Alan R. Washburn
```

 April 1979
 Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER 2. GOVT ACCESSION NO. NPS55-79-010	3. RECIPIENT'S CATALOG NUMBER
4. TiTLE (and Subtitie) Hide and Seek From a Fixed Base	5. TYPE OF REPORT \& PERIOD COVERED Technical
	6. PERFORMING ORG. REPORT NUMEER
7. AUTHOR(s) Alan R. Washburn	8. CONTRACT OR GRANT NUMBER(s)
9 PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, Ca. 93940	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMEERS
11. CONTROLLING OFFICE NAME AND ADORESS Naval Postgraduate School Monterey, CA. 93940	12. REPORT OATE April 1979
	13. NUMEER OF PAGES 18
14 MONITORING AGENCY MAME A AODRESS(tf differant (rom Controlling Office)	15. SECURITY CLASS. (ot int ropore) Unclassified
	15: DECLASSIFICATION DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (OI this Roport)

Approved for public release, distribution unlimited.
17. DISTRIEUTION STATEMENT (of the abatract ontored in 3lock 20, If dIfferent (rom Roport)
18. SUPPLEMEN +ARY NOTES
19. KEY WORDS (Continue on foverse side if necosaary and identliy by block numbor)

Game
Search
Hide
20. ABSTRACT (Continue on reverse s!de ll nocessary and ldentify by diock number)

An abstract hide and seek game is solved, the unique feature of which is that the hiders are constrained to return to a fixed point periodically.

$$
\begin{aligned}
& \text { (2) } \\
& \text { C- } \\
& \text { - } \\
& 5 \\
& \text { (} \\
& 41
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \\
& \text { - } \\
& \text { (2) } \\
& \text { - + - + - } \\
& \square \text { - } 4=\square
\end{aligned}
$$

HIDE AND SEEK FROM A FIXED BASE

by

Alan R. Washburn
Naval Postgraduate School
Monterey, CA 93940

Background

Suppose that a force of "hiders" has an area A available within which to hide from a force of "seekers." Each side can distribute its forces arbitrarily within A. If the density of seeker effort at the location of any given hider is s, then the hider is assumed to escape with probability $f(s)$, where $f(s)$ is some decreasing, convex function of s. The hiders want to maximize the probability of escape, and the seekers want to minimize it. If no further constraints are imposed, it is not difficult to show that each side should allocate its forces uniformly throughout the region, and that the escape probability as the value of a two-person zero sum game is $f(S / A)$, where S is the total amount of seeker effort. Our object in this report is to investigate the impact of constraints on the motion of the hiders. Specifically, we want to investigate what happens if the hiders are required to visit a particular point (a port, typically) on the boundary of A every t, while never travelling at a speed exceeding v.

We can anticipate that the escape probability will be $f(S / A)$ when the product $v t$ is "large," and 0 when $v t$ is "small." In order to simplify the analysis, the following assumptions are made:
a) the region is a circular sector (wedge)
b) the revisit point is at the apex of the wedge
c) $f(s)=1 /(1+s)$.

In Figure 1 , the heaviness of the shading indicates the density of seeker effort for a typical seeker strategy. Note that the effort is dense in the vicinity of the apex, since the hiders must all transit through that area in order to visit the apex. A typical hider "tour" is shown. The hider basically picks a direction at random and a range from a distribution introduced in the next section, goes to the point and stays in the vicinity of that point until it is time to return to the apex. Each hider picks an independent tour after each visit to the apex.

Results
Let

$$
\begin{aligned}
\theta & =\text { angle of the circular sector } \\
r_{\text {sec }} & =\text { radius of the circular sector } \\
A & =\theta r_{\text {sec }}^{2} / 2=\text { area of sector } \\
v & =\text { hider speed } \\
t & =\text { revisit time } \\
r_{\text {max }} & =v t / 2=\text { maximum range of the hiders }
\end{aligned}
$$

$$
\begin{aligned}
& S=\text { total amount of seeker effort } \\
& Y=S /\left(\theta r_{\max }^{2}\right) \\
& U=r_{\text {sec }} / r_{\max }
\end{aligned}
$$

The value of the game (escape probability) depends on the two dimensionless quantities Y (a normalized amount of seeker effort) and U (a normalized sector size); call it $P(U, Y)$. Figure 2 shows $P(U, Y)$ as a function of Y for several values of U. Since $U=1$ corresponds to the case where the maximum range of the hiders is equal to the sector radius, all values of $U>1$ follow the same curve as for $U=1$. The curves in Figure 2 are equivalent to:
(1) Let $V=I-\sqrt{I-U^{2}}$

$$
\text { Case 1: for } Y \leq V^{2} / 6, P(U, Y)=I-\sqrt{2 Y / 3}
$$

$$
\begin{equation*}
\text { Case 2: for } Y \geq V^{2} / 6, P(U, Y)=V /\left(Y+U^{2} / 2\right) \tag{2}
\end{equation*}
$$

Standard limiting operations show that

$$
r_{\max }^{\lim } P 0
$$

(3)

$$
r_{\max }^{\lim _{\infty} P(U, Y)=1 /(1+S / A), ~, ~}
$$

as anticipated.

FIGURE I
ILLUSTRATING A HIDER PATH AND A SHADED SEEKER DENSITY

For example, suppose

$$
\begin{aligned}
r_{\text {max }} & =5000 \mathrm{mi} \\
r_{\text {sec }} & =1000 \mathrm{mi} \\
S & =(25 \mathrm{hr} \text { holding time })\left(10^{5} \mathrm{sq} \mathrm{mi} / \mathrm{hr} \text { search rate }\right) \\
& =25 \times 10^{5} \mathrm{sq} \mathrm{mi} \\
\theta & =1 \text { radian }
\end{aligned}
$$

Then $Y=.1, U=.2$, and $V=.02$. This is Case 2, and $P(U, Y)=.164$. If $r_{\text {max }}$ were "very large," we would have $P(U, Y)=1 / 6$.

The optimal strategy for the hiders is to pick an angle at random and a range from the distribution $F\left(u r_{\text {max }}\right.$), where

$$
E(u)=\left\{\begin{array}{cc}
0 & \text { for } 0 \leq u \leq V \tag{4}\\
\frac{(u-V)^{2}}{2 V(1-u)} & \text { for } V \leq u \leq U
\end{array}\right.
$$

and where V is as earlier defined. Qualitatively, the hider have a tendency to pick large ranges, with Ur max being the smallest range picked.

Let $y(u)$ be the density of seeker effort at range $u_{\max }$ let $T=\sqrt{6 Y}$, and let $K=\left(Y+U^{2} / 2\right) /[V(1-V / 3)]$. Then the optimal density $y(u)$ is
(5) Case 1. $y(u)= \begin{cases}\sqrt{T / u}-1 & \text { for } u \leq T \\ 0 & \text { for } u \geq T\end{cases}$
(6) Case 2. $y(u)= \begin{cases}K \sqrt{V / u}-1 \text { for } u \leq V \\ k-1 & \text { for } u \geq V\end{cases}$

Qualitatively, the searchers have a tendency to cluster near the apex, particularly in case $1,\left(Y \leq V^{2} / 6\right)$. The density is actually unbounded near the apex; that is, $\lim _{u \rightarrow 0} y(u)=\infty$. The proof that the functions given above represent the value of the game and the optimal strategies for the two sides is the subject of the next section.

Exact Statement of the Problem
Let u be range from the apex measured in units of rmax' so that the hiders must pick a range u for each tour in the interval $[0, U]$. Let $F(v)$ be the $C . D . F$. used by the hiders. Then the hiders spend $G(u)$ of their time within u of the apex, where

$$
\begin{equation*}
G(u)=F(u)+u(1-F(u)) \tag{7}
\end{equation*}
$$

Formula (7) is true because a hider will be within u of the apex throughout its patrol period if it picks a range smaller than or equal to u, and will spend a fraction u of its patrol time within u of the apex even if it picks a range greater than u. $F(u)$ can be any C.D.F. defined on $[0, U]$, but $G(u)$ cannot, which is what makes the problem nontrivial.

Since $y(u)$ is the density of seeker effort at range u, the escape probability for a hider averaged over time is

$$
\begin{equation*}
A(F, y)=\int_{0}^{U}(I+y(u))^{-1} d G(u) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{0}^{U} y(u) u d u=Y \text { and } y(u) \geq 0 \tag{9}
\end{equation*}
$$

Equations (7), (8), and (9) define a t'wo-person zero sum game where the hiders select a C.D.F. $F(u)$ on $[0, U]$ and the seekers select $y(u)$ according to (9). We next show that the results quoted earlier constitute a saddle point of this game.

Proof of Results

The results shown below were discovered by using the theory of optimal control, but we will prove that the game has been solved by showing that the solution offered is a saddle point. While this is analytically simpler, it will not motivate the results.

We must show that

$$
\max _{F} A\left(F, y^{*}\right)=P(U, Y)=\min _{Y} A\left(F^{*}, Y\right)
$$

where F^{*} and Y^{*} are the functions given earlier.

Proof that $P(U, Y)=\min _{Y} A\left(F^{*}, Y\right)$
Let $G^{*}(u)=F^{*}(u)+u\left(1-F^{*}(u)\right)$. Using (1) and (4),
$F^{*}(U)=1$, so also $G^{*}(U)=1$. After substitution and simplification,

$$
G^{*}(u)=\left\{\begin{array}{cc}
u & \text { for } u \leq V \\
\frac{u^{2}+V^{2}}{2 V} & \text { for } v \leq u \leq U
\end{array}\right.
$$

Let $g(u)=(d / d u) G^{*}(u)$. Then we have

$$
A\left(F^{*}, y\right)=\int_{0}^{U} g(u) /(1+V(u)) d u,
$$

where

$$
g(u)=\left\{\begin{array}{cc}
1 & \text { for } u \leq V \\
u / V & \text { for } \\
u \leq u \leq U
\end{array}\right.
$$

Consider the Lagrangian

$$
h(y)=\int_{0}^{U}\left[\frac{g(u)}{I+y(u)}+\lambda u y(u)\right] d u,
$$

which is to be minimized subject to $y(u) \geq 0$. We minimize for each u separately by differentiation, obtaining the minimizing function $\tilde{\mathrm{Y}}$:

$$
\tilde{y}(u)=\left(\sqrt{\frac{g(u)}{\lambda u}}-1\right)^{+},
$$

where + indicates that $\tilde{y}(u)$ is to be 0 rather than negative If $\lambda V<1, y(u)>0$ for all u, and

$$
\begin{align*}
A\left(F^{*}, \tilde{y}\right) & =\int_{0}^{U} \sqrt{\lambda u g(u)} d u \tag{10}\\
& =\sqrt{\lambda}\left[\int_{0}^{V} \sqrt{u} d u+\int_{V}^{U} u / \sqrt{V} d u\right] \\
& =\sqrt{\lambda / V}\left[\frac{2}{3} V^{2}+\left(U^{2}-V^{2}\right) / 2\right] \\
& =\sqrt{\lambda / V}\left[V^{2} / 6+U^{2} / 2\right]
\end{align*}
$$

If \tilde{y} is to be feasible, we must also have

$$
\begin{align*}
Y & =\int_{0}^{U} u \tilde{y}(u) d u=\int_{0}^{V} \sqrt{u / \lambda} d u+\int_{V}^{U} \frac{u}{\sqrt{\lambda V}} d u-U^{2} / 2 \tag{11}\\
& =\frac{1}{\sqrt{\lambda V}}\left[V^{2} / 6+U^{2} / 2\right]-U^{2} / 2
\end{align*}
$$

Since $U^{2}+V^{2}=2 V, V^{2} / 6+U^{2} / 2=V(I-V / 3)$. Solving
(11) for $\sqrt{\lambda}$ and then substituting $\sqrt{\lambda}$ in (10), we obtain $A\left(F^{*}, \tilde{Y}\right)=P(U, Y)$, and also $\lambda V<I$ if and only if $Y>V^{2} / 6$. If $\lambda V \geq I, \tilde{y}(u)=0$ for $u \geq I / \lambda$. Let $T=I / \lambda$. Then

$$
\begin{equation*}
A\left(F^{*}, \tilde{y}\right)=\int_{0}^{T} \sqrt{\lambda u} d u+1-T=1-T / 3, \tag{12}
\end{equation*}
$$

and if \tilde{y} is to be feasible we must have

$$
\begin{equation*}
Y=\int_{0}^{T} u(\sqrt{1 / \lambda u}-1) d u=2 T^{2} / 3-T^{2} / 2=T^{2} / 6 \tag{13}
\end{equation*}
$$

Solving (13) for T and substituting in (12), we obtain $A\left(F^{*}, \tilde{Y}\right)=P(U, Y)$, and also $\lambda V \geq 1$ if and only if $Y \leq V^{2} / 6$.

According to Everett's theorem [1] on Lagrange multipliers, $A\left(F^{*}, Y\right) \geq A\left(F^{*}, \tilde{Y}\right)$, so we have shown that $P(U, Y)=\min _{Y} A\left(F^{*}, Y\right)$. We also note that $\tilde{y}=y^{*}$.

Proof that $P(U, Y)=\max _{F} A\left(F, Y^{*}\right)$
Since $y^{*}(\mathrm{a})$ is differentiable, we can integrate $A\left(F, Y^{*}\right)$ by parts to obtain

$$
A\left(F, y^{*}\right)=\frac{G(U)}{1+Y^{*}(U)}-\int_{0}^{U} G(u) B(u) d u,
$$

where

$$
B(u)=-\left(\frac{d}{d u} y^{*}(u)\right) /\left(I+y^{*}(u)\right)^{2}
$$

In both Cases I and II, $B(u) \geq 0$ for $u \leq V$, and $B(u)=0$ for $u \geq V$ (note $T \leq V$ in (5)). Since $G(u)=u+F(u)(1-u) \geq u$,

$$
A\left(F, Y^{*}\right) \leq \frac{1}{1+Y^{*}(U)}-\int_{0}^{U} u B(u) d u .
$$

But it is also true that $G^{*}(u)=u$ for $u \leq V$, so $A\left(F, Y^{*}\right) \leq A\left(F^{*}, Y^{*}\right)$ for any F. But we already know $A\left(F^{*}, Y^{*}\right)=P(U, Y)$, so the proof is complete.

ACKNOWLEDGMEIT. This research was conducted while acting as consultant to ORI Inc. and reported on separately.

REFERENCE

(I) Everett, H. III, "Generalized Lagrange Multiplier Me hod for Solving Problems of Optimum Allocation of Resources," Opns. Res. 11, 399-417 (1963).
Dean of Research 1
Code 012
Naval Postgraduate School
Monterey, California 93940
Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314
Library, Code 0212 2
Naval Postgraduate School
Monterey, California 93940
Commanding Officer 1
Air Test and Evaluation Squadron 1 (VX-1)
Patuxent River, Maryland 20670
Attn: Code 713
Commanding Officer 1
Submarine Development Group Two Groton, Connecticut 06340
Director 1
Strategic Systems Project Office
1931 Jefferson Davis Highway
Arlington, Virginia 20376
Attn: Code SP2021
Naval Air Development Center 1
Code 2022
Johnsville, Pennsylvania 18974
Center for Naval Analysis1
1401 Wilson Boulevard
Arlington, Virginia 22209
Naval Weapons Laboratory 1
Dahlgren, Virginia 22448
Naval Weapons Center 1
China Lake, California 93555
Naval Surface weapons Center 1
White Oak
Silver Spring, Maryland 20910
Naval Research Laboratory 1
Washington, D.C. 20390

David Taylor Naval Ship Research \& Development Center

Naval Ocean Systems Center

Naval Intelligence Support Center
4301 Suitland Road
washington, D.C. 20390
Naval Electronics Systems Command
2511 Jefferson Davis Highway
Arlington, Virginia 20360
Naval Underwater Systems Center
Code SA33
New London, Connecticut 06320
Naval Ship Engineering Center
Hyattsville, Maryland 20782
Naval Coastal Systems Laboratory
Panama City, Florida 32401
Naval Air Systems Command
code 370
Washington, D.C. 20361
Naval Sea Systems Command
Code 03424
Washington, D.C. 20362
Naval Underwater Systems Center
1
Newport, Rhode Island 02840
Naval Ordnance Station
1
Indian Head, Maryland 20640
Naval Surface Weapons Center
Dahlgren, Virginia 22448
Anti-Submarine Warfare Systems Project Office 1
Code ASW-137
Department of the Navy
Washington, D.C. 20360
Office of Naval Research
Code ONR-230
800 North Quincy Street
Arlington, Virginia 22217
Office of Naval Research 1
Code ONR-434
800 North Quincy Street Arlington, VA 22217
Daniel H. Wagner, Associates 1
Station Square One
Paoli, PA 19301
Tetra Tech, Inc. 1
1911 Fort Meyer Dr.
Suite 601
Arlington, VA 22209
Systems Planning and Analysis 1
1600 Wilson Blvd.
Suite 700
Arlington, VA 22209
ORI, Inc. 1
1400 Spring st.
Silver Spring, MD 20910
Naval Postgraduate School
Monterey, Ca. 93940
Attn: R. N. Forrest, Code 55 Fo 1
A. R. Washburn, Code 55 Ws 10
R. J. Stampfel, Code 55 1
Library, Code 55 1

C-

$$
\begin{aligned}
& \text { U188139 }
\end{aligned}
$$

